Leopold's Blog
arxiv 2020 NAS-adversarial attacks arxiv 2020 NAS-adversarial attacks
一篇还挂在arxiv上的很有意思的神经网络架构搜索(NAS)论文链接-自解释用于神经网络架构搜索 这里主要介绍它的思路 首先总结文章的主要思想:通过搜索一个解释网络A“更好的解释目标任务”,解释的准则是通过对抗攻击样本学一个像素位置权重$\
CVPR2020 Geometric Adversarial Attacks and Defenses on 3D Point Clouds CVPR2020 Geometric Adversarial Attacks and Defenses on 3D Point Clouds
CVPR2020 Geometric Adversarial Attacks and Defenses on 3D Point Clouds摘要深度神经网络很容易出现恶意攻击,这些攻击会恶意更改网络的结果。在这项工作中,我们从几何角度探索对
HRNet-OCR by Pytorch HRNet-OCR by Pytorch
HRNet-OCR的原代码将各种超参数和训练超参数冗杂在一起,导致不用于其他数据集会很不方便,为了方便调用模型,对模型的超参进行抽离后得到简易版模型实现。 OCR如下图 # ---------------------------------
CVPR2018-Learning to Adapt Structured Output Space for Semantic Segmentation CVPR2018-Learning to Adapt Structured Output Space for Semantic Segmentation
论文链接As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth l
CVPR2020-Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery CVPR2020-Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery
These general semantic segmentation methods mainly focus on multi-scale context modeling, ignoring the special issues